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Società Italiana di Fisica
Springer-Verlag 2000

Bose-Einstein condensates in optical lattices:
Spontaneous emission in the presence of photonic band gaps

K.-P. Marzlin1,a and W. Zhang2

1 Fachbereich Physik der Universität Konstanz, Postfach 5560 M674, 78457 Konstanz, Germany
2 Centre for Lasers and Applications, and Department of Physics, Macquarie University, Sydney,

New South Wales 2109, Australia

Received 27 March 2000

Abstract. An extended Bose-Einstein condensate (BEC) in an optical lattice provides a kind of periodic
dielectric and causes band gaps to occur in the spectrum of light propagating through it. We examine
the question whether these band gaps can modify the spontaneous emission rate of atoms excited from
the BEC, and whether they can lead to a self-stabilization of the BEC against spontaneous emission. We
find that self-stabilization is not possible for BECs with a density in the order of 1014 cm−3. However,
the corresponding non-Markovian behavior produces significant effects in the decay of excited atoms even
for a homogeneous BEC interacting with a weak laser beam. These effects are caused by the occurrence
of an avoided crossing in the photon (or rather polariton) spectrum. We also predict a new channel for
spontaneous decay which arises from an interference between periodically excited atoms and periodic
photon modes. This new channel should also occur in ordinary periodic dielectrics.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
32.80.-t Photon interactions with atoms – 42.70.Qs Photonic bandgap materials

1 Introduction

It is well-known that the radiation properties of atoms
can dramatically be manipulated by changing the environ-
ment where atoms emit photons. For micro-cavities it has
been demonstrated [1] and for periodic dielectric media
predicted [2,3] that a suppression of spontaneous emis-
sion (SE) can be achieved. In the case of a micro-cavity
this happens because its geometry reduces the radiation-
mode density, whereas in a periodic dielectric medium SE
is suppressed due to the formation of photonic band gaps
(PBG).

The recent achievement of Bose-Einstein condensation
in magnetic traps [4] has provided a new state of mat-
ter where all atoms share a single macroscopic quantum
state. Such a state of matter offers great opportunities to
explore and test new phenomena related to macroscopic
quantum coherence. Recently several authors have theo-
retically studied spontaneous emission in a trapped BEC.
In this case the continuous center-of-mass momentum dis-
tribution leads to an increase of SE [6,7]. In addition, the
stimulated emission can be increased by the Bose enhance-
ment in a BEC [8]. In the case of two BECs, interference
effects can be important [9].

The present work is focused on the case of an extended
BEC and was motivated by the following idea. If an ex-
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tended BEC is placed in an optical lattice it will become
periodic. Since such a BEC does provide a (quantum) di-
electric it affects the properties of photons propagating
through it and phenomena similar to PBGs do occur [10].
Since then the photon mode density around the resonance
frequency is reduced one can expect that SE is suppressed
by non-Markovian effects. We thus are led to the follow-
ing question: can a BEC in an optical lattice stabilize itself
against spontaneous emission?

A large part of this paper is devoted to the answer
of this question. However, we also have studied what will
happen for a homogeneous extended BEC interacting with
a weak running laser beam. Surprisingly, non-Markovian
effects similar to that in a PBG do occur even in this non-
periodic situation. This happens because in the presence
of such a BEC photons and excited atoms do form su-
perpositions called polaritons [5]. The spectrum of these
polaritons contains an avoided crossing which has a simi-
lar effect on the SE rate as a PBG.

The paper is organized as follows. In Section 2 we will
present the theoretical model on which our calculations
are based. The general derivation of the SE rates in laser
fields will be done in Section 3. The results for the case of
a BEC in a traveling wave laser beam or in a 1D optical
lattice beam are discussed in Sections 4 and 5 respectively,
and are summarized in Section 6. The details of the cal-
culations are given in two Appendices.
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2 The theoretical model

We consider a BEC composed of two-level atoms which
is coupled to the electromagnetic field. The interaction
is described by using minimal coupling in rotating-wave
approximation under neglection of the term quadratic in
the electromagnetic field. The interaction Hamiltonian is
then given by

Hint =
∫

d3kd3k′ζσ(k)aσ(k)Ψg(k′)Ψ†e (k + k′) + H.c.,

(1)

with ζσ(k) := ωresd · εσ(k)[~/(2(2π)3ε0ωk]1/2 for an elec-
tromagnetic mode with frequency ωk = c|k| and polar-
ization vector εσ(k). The vector d denotes the atomic
dipole moment and ωres is the resonance frequency. The
Heisenberg equations of motion for the photon annihila-
tion operators aσ(k) and the field operators Ψe and Ψg for
excited and ground-state atoms can be derived easily and
are given by

i~Ψ̇e(k) =
{
~2k2

2M
+ ~ωres

}
Ψe(k)

+
∫

d3k′
∑
σ

ζσ(k′)aσ(k′)Ψg(k− k′) (2)

i~Ψ̇g(k) =
~2k2

2M
Ψg(k)

+
∫

d3k′
∑
σ

ζ∗σ(k′)a†σ(k′)Ψe(k + k′) (3)

i~ȧσ(k) = ~ωkaσ(k)

+ζσ(k)
∫

d3k′Ψ†g (k′)Ψe(k + k′). (4)

We have neglected the interatomic interaction terms.
To address the question of self-stabilization consider

the following situation: the atoms in the internal ground-
state have formed a BEC which is described by a macro-
scopically occupied coherent collective wavefunction Ψ coh

g .
They interact with a traveling wave or standing wave laser
which is described by a coherent c-number field acoh

σ (k).
Due to this interaction a part of the BEC is coherently ex-
cited. We denote the wavefunction for coherently excited
atoms by Ψ coh

e . Since both the ground-state BEC and the
laser beam are described by c-number fields it is easy to
see from equation (2) that Ψ coh

e must be a c-number field,
too. It is only through the spontaneous decay of these
coherently excited atoms that q-number deviations from
c-number solutions to equations (2–4) can appear. The
corresponding SE rate determines the stability of the
macroscopic solution.

Let us start with the assumption that the BEC can in-
deed stabilize itself against SE. In that case a stationary
macroscopic solution (Ψ coh

g , Ψ coh
e , acoh

σ ) of equations (2–4)
should exist. The problem then can be divided into two
separate parts. We first search for the stationary macro-
scopic coherent solution which includes all interaction ef-
fects between atoms and photons beside SE. Having found

this solution we can perform a stability analysis to an-
alyze the quantum fluctuations (SE) around it. Sponta-
neous decay will make the coherent solution unstable and
the corresponding quantum corrections will become im-
portant on a time scale comparable to the atomic lifetime
(which is to be calculated). For times shorter than this
lifetime the deviations from the coherent solution will be
small (i.e., there are only few non-condensed atoms and
non-laser photons).

Given a stationary macroscopic solution of the
Heisenberg equations of motion the stability analysis can
be performed by applying Bogoliubov’s method. This is
done by writing the quantum field operators in the form

Ψg(k) = exp[−iµt]{Ψ coh
g (k) + δΨg(k)} (5)

Ψe(k) = exp[−i(µ+ ωL)t]{Ψ coh
e (k) + δΨe(k)} (6)

aσ(k) = exp[−iωLt]{acoh
σ (k) + δaσ(k)} (7)

and retaining in equations (2–4) only terms linear in δΨi
and δaσ, which describe the quantum fluctuations around
the coherent solution.

The resulting linearized equations of motions are
given by

i~δΨ̇e(k) = −~∆LδΨe(k)

+
∫

d3k′Ψ coh
g (k−k′)δa(k′)ζ(k′) (8)

i~δΨ̇g(k) =
∫

d3k′Ψ coh
e (k + k′)δa†(k′)ζ(k′) (9)

i~δȧ(k) = ~(c|k| − ωL)δa(k)

+ζ(k)
∫

d3k′
{
Ψ coh

e (k + k′)δΨ†g (k′)

+ δΨe(k + k′)Ψ coh∗
g (k′)

}
. (10)

Here ωL is the laser’s frequency and ∆L := ωL − ωres its
detuning. The linearized equations are valid as long as the
photon-atom quantum fluctuations remain small enough,
i.e., there are only few non-condensed atoms and non-laser
photons. This is certainly the the case for short times. Fur-
thermore several other approximations have been made.
First, it is not difficult to see that for a BEC of density
1014 cm−3 the chemical potential ~µ, the kinetic energy
~2k2/(2M) of an atom, and the laser’s Rabi frequency
Ω = acohζσ0(kL)/~ are typically much smaller than the
interaction energy ζσ(k)Ψ coh

g (k) if |k| is of the order of
ωres/c. We thus have neglected all terms in which these
quantities do appear.

In addition, we have introduced two specific polariza-
tion vectors for the electromagnetic field. A “non-coupled”
polarization vector εNC(k), which is perpendicular to the
photon momentum k and the atomic dipole moment d,
and a coupled polarization vector εC(k), which is per-
pendicular to k and εNC(k) (see Fig. 1). Since the in-
teraction is proportional to the scalar product of the po-
larization vector and d only electromagnetic modes with
polarization εC(k) do interact with the atoms. We asso-
ciate with these modes the quantum fluctuation operator
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k
d
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Fig. 1. The polarization vectors can be chosen in a way that
only one of them, "C(k), is not orthogonal to d. In this case the
three vectors d, k, and "C(k) are in the same plane. The second
polarization vector "NC(k) is perpendicular to this plane.

δa(k) := δaσ=C(k). It is easy to see that the scalar product
εC(k) ·d, which appears in the definition of ζσ(k), is given
by |d| sinϑk, where ϑk is the angle between k and d. For
notational convenience we have defined ζ(k) := ζσ=C(k).

It is possible to derive equations (8–10) from an effec-
tive Hamiltonian for the quantum fluctuations,

Hfluct = Hpol +Hspont. (11)

The first part,

Hpol = ~
∫

d3k
{
−∆LδΨ

†
e δΨe + (c|k| − ωL)δa†δa

}
+
∫

d3kd3k′ζ(k)Ψ coh
g (k− k′)

×
{
δa(k)δΨ†e (k′) + δa†(k)δΨe(k′)

}
, (12)

conserves the number of photons plus excited atoms,

Npol =
∫

d3k{δΨ†e δΨe + δa†δa}. (13)

The first integral in Hpol describes the energy of free inco-
herent photons and atoms. The second integral represents
the excitation of atoms from the ground-state BEC and
the reabsorption of incoherent photons by the BEC. Its
eigenmodes |q, r〉 = P†q,r|0〉 are generally superpositions of
photons and excited atoms, i.e., polaritons [5]. They are
characterized by a continuous, momentum-like quantum
number q and discrete quantum numbers r (see below)
and can generally be written as

P†q,r =
∫

d3k{Eq,r(k)δΨ†e (k) +Aq,r(k)δa†(k)}(14)

δΨe(k) =
∫

d3q
∑
r

Eq,r(k)Pq,r (15)

δa(k) =
∫

d3q
∑
r

Aq,r(k)Pq,r . (16)

The form of the expansion coefficients Eq,r(k),Aq,r(k) de-
pends on the particular physical situation and is derived
for a traveling and standing-wave laser in Appendices A.2
and B.2, respectively. The second part of the effective

Hamiltonian is given by

Hspont =
∫

d3kd3k′ζ(k′)Ψ coh
e (k + k′)

×
{
δa†(k′)δΨ†g (k) + δa(k′)δΨg(k)

}
. (17)

It does not conserve Npol and describes the spontaneous
decay of coherently excited atoms. If this term would van-
ish the macroscopic coherent state would be stable against
spontaneous decay.

3 General derivation of SE rates

The stability analysis essentially comprises to solve the
time evolution of the polariton modes for relatively short
times during which the occupation of the macroscopic co-
herent solution does not change very much. This will allow
us to derive the initial SE rate of coherently excited atoms.
We assume that initially all atoms and photons are in the
state determined by the macroscopic coherent solution,
or in other words, the quantized polariton field (photon-
atom quantum fluctuations) is initially in the vacuum |0〉.
This state then evolves under the action of the fluctuation
Hamiltonian (11) into the time dependent state |ψ(t)〉.

To describe this time evolution we rewrite the polari-
ton Hamiltonian (12) in the convenient form

Hpol =
∫

d3q
∑
r

~(ωq,r −∆L)P†q,rPq,r, (18)

where ωq,r − ∆L are the eigenfrequencies of Hpol. Using
equations (15, 16) one also can derive

Hspont =
∫

d3k

∫
d3q

∑
r

{
δΨg(k)Pq,r gq,r(k)

+ δΨ†g (k)P†q,r g∗q,r(k)
}

(19)

with

gq,r(k) :=
∫

d3k′ζ(k′)Ψ coh
e (k + k′)Aq,r(k′). (20)

To describe the evolution of the state |ψ(t)〉 we make the
following ansatz, which corresponds to the one-photon ap-
proximation,

|ψ(t)〉 ≈ R(t)|0〉

+
∫

d3k

∫
d3q

∑
r

Sq,r(k, t)P†q,rδΨ†g (k) |0〉. (21)

The Schrödinger equation i~|ψ̇〉 = Hfluct|ψ〉 then can
be solved by using the Laplace transform R̄(s) =∫∞

0 exp[−ts]R(t)dt and similarly for Sq,s(k, t). The result-
ing equations,

i~(sR̄(s)−R(0)) =
∫

d3k

∫
d3q

∑
r

S̄q,r(k, s)gq,r(k)

(22)

i~sS̄q,r(k, s) = ~(ωq,r −∆L)S̄q,r(k, s) + R̄(s)g∗q,r(k),
(23)
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have the solution

R̄(s) =
R(0)

s− I(s)
· (24)

The dependence on the particular physical situation is
completely determined by the integral

I =
1

i~2

∫
d3q

∑
r

∫
d3k|gq,r(k)|2
zs − ωq,r

· (25)

For notational convenience we have defined the complex
variable

zs := is+∆L. (26)

The most important aspect of I is its complex analytical
structure. This is because the inverse Laplace transform
is defined by

R(t) =
1

2πi

∫ ε+i∞

ε−i∞
etsR̄(s)ds, (27)

where ε is chosen so that the path of integration lies to
the right of any branch cuts and poles of R̄(s). From equa-
tion (24) it becomes clear that the branch cuts of R̄(s) are
those of I and that the poles of R̄(s) essentially depend on
the form of I. Assuming that all poles of R̄(s) are simple
poles we then find for R(t)

R(t) =
∑
si

etsiRes(R̄(s), si) +
∑
Bj

1
2πi

∫
Bj

etsR̄(s)ds,

(28)

where si denote the poles of R̄(s) and Bj the branch cuts.
Each pole corresponds to a fraction of the coherently ex-
cited atoms which decays (or increases exponentially) with
a SE rate of

γi = −2Re(si). (29)

The integration contours around the branch cuts corre-
sponds to a fraction of coherently excited atoms with a
non-exponential time evolution.

With equation (29) we have found a general expres-
sion for the SE rates that can appear in the presence of a
BEC. We now want to study the different physical situa-
tions of a BEC in a traveling or standing wave laser and
to derive the corresponding values of γi. To do so we have
to find closed expressions for the polariton eigenfrequen-
cies ωq,r and the functions gq,r(k) in order to derive I(s).
These quantities in turn require the knowledge of both
the polariton eigenmodes and the fields (Ψ coh

g , Ψ coh
e , acoh

σ )
comprising the macroscopic coherent solution. Since the
calculations leading to a closed expression for I are quite
involved we present them in the appendices. In the next
two sections we analyse the results and give physical in-
terpretations of the effects involved.

Fig. 2. A homogeneous BEC induces an avoided crossing in
the polariton spectrum. Far away from the avoided crossing the
polaritons describe excited atoms or photons. Thus, if one fo-
cuses on the photons, the avoided crossing provides an effective
band gap.

4 Spontaneous emission rates for a BEC
in a traveling wave laser

In the case of a BEC interacting with a traveling wave
laser, the polariton dispersion relation derived in Ap-
pendix A.2 does contain an avoided crossing around the
resonance frequency of the atoms (see Fig. 2).

Since nearly resonant photons provide the dominant
contribution to SE, it is physically evident that this
avoided crossing in the dispersion spectrum will produce
an effect on the SE rate which is similar to what a PBG
can do.

This effect can be studied by analysing the closed ex-
pression for the renormalized value of I(s) which we have
derived using the generalized Wigner-Weisskopf approxi-
mation presented in Appendix A.3 We find

IRen =
(

1− 4νg

5zs

)
IRen
0 +

Neγvac

5πi

{
− 47νg

15zs
+

8
3

+
zs
νg

+
(

1 +
4νg

zs

)(
1− zs

νg

)3/2

arcoth
(√

1− zs
νg

)}
· (30)

In this expression γvac := d2ω3
res/(3π~ε0c

3) denotes the
SE rate in free space and Ne := V ρe the number of coher-
ently excited atoms (V is the quantization volume). The
frequency

νg :=
|d|2ρg

2~ε0
, (31)

with ρg being the density of atoms in the ground-state,
determines the strength of the interaction between pho-
tons and excited atoms mediated by the BEC. Typically
we have Einteraction = ~√νgωres (see Appendix A.2).
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Fig. 3. Spontaneous emission rate of a partially excited BEC
in a running laser wave for detuning ∆L > 4νg (solid lines)
and ∆L < 0 (dashed lines). The atoms break up into different
fractions with different decay rates. The dominating fraction
is the one whose decay rate asymptotically approaches γvac.

As already mentioned in Section 3 the time evolution
of the macroscopic coherent solution depends essentially
on the analytical structure of R̄(s) of equation (24). In
general, R̄(s) has several poles and a branch cut origi-
nating from the term including the arcoth in IRen. This
cut lies between zs = 0 and zs = νg. Another important
property of IRen is that it depends on zs only through the
ratio zs/νg so that the magnitude of the SE modification
depends on this ratio, too. In addition, a numerical eval-
uation of equation (30) shows that it is a slowly varying
function of the order γvacNe unless zs/νg is close to zero.
This has the following consequences.

In free space zs can be taken to be close to the pole of
R̄(s), i.e., of the order of γvacNe. Hence, the magnitude
of non-Markovian effects is essentially determined by the
ratio

zs
νg
≈ Neγvac

νg
=

16π2

3
Ne

ρgλ3
· (32)

This ratio is proportional to the total number of excited
atoms divided by the number of condensed ground-state
atoms in a cube whose edges have the length of the optical
wavelength λ. The request that this ratio should be small
has important consequences when applied to BECs of a
density in the order of 1014 cm−3. In this case the BEC-
induced effects can only be relevant if there are very few
coherently excited atoms (in the order of one). However,
for higher densities significant effects can occur also for a
higher number of excited atoms.

The request that Ne is of order one also implies
|∆L| � ΩL since otherwise the Rabi frequency would be
large enough to excite many atoms. As discussed in Ap-
pendix A.1, the macroscopic coherent solution implies in
this case for ∆L > 0 the additional constraint ∆L > 4νg.
In Figure 3 the real part of the two dominating poles s1, s2

of I(s) is shown as a function of ∆L for the case Ne = 1
and νg = 2.5γvac (corresponding to an atom density ρg of
5 × 1014 cm−3). For ∆L > 0 a third pole appears with
a very small negative decay rate (< 10−3γvac). The oc-
currence of negative decay rates is consistent within the
range of validity of the linearized equations for the quan-

tum fluctuations and may indicate the formation of an
atom-photon bound state [13]. Obviously the change in
the SE rate can be quite large for small |∆L|. According to
equation (28) the fraction of atoms belonging to the poles
can be easily calculated by determining the residue at the
poles. It turns out that the pole whose real part asymp-
totically approaches γvac always dominates and that the
fraction of atoms belonging to other poles is significant
only for small |∆L|. The same holds for the fraction cor-
responding to the branch cut.

If |∆L| � γvac holds the dominant pole s1 can be cal-
culated by perturbation theory. Its real part (the decay
rate) is then given by

1
2
γ(∆L) = Ne

γvac

2

(
1− 4νg

5∆L

)
+O(∆−2

L ). (33)

We see that the SE rate is altered by a factor of 1 −
4νg/(5∆L). It depends on the sign of ∆L whether SE is
increased or decreased. We remark that the reason why
SE depends on the detuning is that the coherently excited
atoms are driven by the laser field and thus oscillate at
the laser frequency ωL instead of the resonance frequency
ωres (see Eq. (6)).

We shortly summarize the results that we have found
for a BEC interacting with a running laser beam. For evo-
lution times smaller than the atomic lifetime and for a
weak laser beam which only excites a number Ne = O(1)
of excited atoms (for BEC densities of 1014 cm−3), the
spontaneous emission rate is significantly modified by non-
Markovian effects. These effects result from an avoided
crossing in the polariton spectrum caused by the extended
homogeneous BEC in the internal ground state.

In the next section we will examine the corresponding
results for a spatially periodic (lattice) BEC in a standing
wave laser beam.

5 Spontaneous emission of a BEC
in a standing wave laser

A BEC in an optical lattice formed by a standing wave
laser beam becomes spatially periodic and thus provides
a kind of periodic dielectric. The polariton spectrum will
therefore contain band gaps. We have derived the corre-
sponding dispersion relation in Appendix B.2. As is well
known from PBGs a band gap around the resonance fre-
quency will lead to non-Markovian effects in the spon-
taneous emission of an atom. The examination of these
effects will answer the question whether a periodic BEC
in an optical lattice can stabilize itself against SE.

To determine the SE rate of a BEC in a 1D optical
lattice we have again to evaluate the integral I of equa-
tion (25). This task is quite involved and is presented in
Appendix B.3. Our final analytical form of the renor-
malized integral IRen is given by the somewhat lengthy
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IRen =
N̄eγvac

2πi

�
2 + ln

�
Λ

ωres

��

+
iγvacN̄e

π

�Z ∞
1

vdv ln

�
(f0(zs)− v)(

√
v2 + 1− f0(zs)) + f1(zs)

(f0(zs)− v)(
√
v2 − 1− f0(zs)) + f1(zs)

�
+

Z 1

0

vdv ln

�
(f0(zs)− v)(

√
v2 + 1− f0(zs)) + f1(zs)

(f0(zs)− v)(1− v − f0(zs)) + f1(zs)

��

+
iγvacÑe

π

ν̃g

zs

Z ∞
1

√
vdv

f0(zs)− v

(
(v2 + 1)1/4 − (v2 − 1)1/4 − h(v)arctanh

�
(v2 + 1)1/4

h(v)

�
+ h(v)arctanh

�
(v2 − 1)1/4

h(v)

�)

+
iγvacÑe

π

ν̃g

zs

Z 1

0

√
vdv

f0(zs)− v

(
(v2 + 1)1/4 − (1− v)1/2 − h(v)arctanh

�
(v2 + 1)1/4

h(v)

�
+ h(v)arctanh

�√
1− v
h(v)

�)
· (34)

expression

see equation (34) above.

In this result we have introduced a couple of new nota-
tions. For notational convenience we have defined

f0(zs) :=
zs + ωres

2ckL
− ωres

2ckL

ν̄g

zs
(35)

f1(zs) :=
ν̃g

zs

ωres

2ckL
(36)

as well as the abbreviation

h(v) :=
√
f0(zs)− f1(zs)/(f0(zs)− v).

We also introduced a cut-off Λ ≈ mec
2/~ to regularise

the integral (me is the electron’s mass). Two important
physical quantities are given by

N̄e :=
V

(2π)3

∑
m

(Ψ coh
e,2m+1)2 (37)

Ñe :=
V

(2π)3

∑
m

Ψ coh
e,2m−1Ψ

coh
e,2m+1 (38)

where V denotes the quantization volume and the sum
runs over the (real) momentum components Ψ coh

e,m of co-
herently excited atoms. N̄e is simply the total number of
excited atoms in the macroscopic coherent field, and Ñe

describes how these atoms are distributed in momentum
space and is always smaller than N̄e. It is a measure for
the degree of periodicity of the density of excited atoms,
very roughly we have V ρe(z) ≈ N̄e + Ñe cos(2zkL).

The influence of the BEC in a standing wave laser on
the SE rate is determined by the frequencies

ν̄g :=
ζ2(kL)
~2ωres

ρ̄g(2π)3 ≈ ρ̄gd2

2~ε0
(39)

ν̃g :=
ζ2(kL)
~2ωres

ρ̃g(2π)3 ≈ ρ̃gd2

2~ε0
· (40)

In the polariton dispersion relation ν̄g produces a contri-
bution similar to that of νg in the case of a BEC in a
traveling wave laser beam (avoided crossing). ν̃g produces

a real PBG close to the resonance frequency due to the
spatial periodicity of a BEC in a 1D optical lattice. The
two frequencies define the strength of the interaction me-
diated by the mean density ρ̄g and the periodic part ρ̃g of
the ground-state BEC,

ρ̄g :=
1

(2π)3

∑
m

(Ψ coh
g,2m)2 (41)

ρ̃g :=
1

(2π)3

∑
m

Ψ coh
g,2mΨ

coh
g,2m+2. (42)

These densities play a similar role to what Ñe/V and
N̄e/V do for coherently excited atoms. For a mean density
of ρ̄g ≈ 1014 cm−3 we find ν̄g ≈ 4 × 106 Hz. The magni-
tude of ν̃g can vary between ν̄g for a very strong optical
potential and 0 if the laser beam is switched off.

Although equation (34) has a complicated structure it
allows to analyze the main features of IRen and hence of
the time evolution of the macroscopic coherent solution in
the presence of (small) quantum fluctuations. It is even
possible to estimate the influence of the band gap with
some simple arguments.

5.1 General structure of the result

A very important feature of the integral (34) is that all
parts of IRen are proportional to N̄eγvac or Ñeγvac. In
addition, it becomes obvious that IRen depends on the
ground-state BEC and on the complex variable zs essen-
tially through the ratios zs/ν̄g and zs/ν̃g. The only excep-
tion to this is the first term containing zs in equation (35),
but this term is negligible compared to ωres and does only
serve to keep book on which side of the branch cut zs is
placed (see remarks below Eq. (76)).

These facts can be exploited to estimate under which
circumstances the influence of the BEC on the SE rate is
significant. Since for a BEC in a traveling laser beam the
contribution of the poles of R̄(s) usually dominates (see
Sect. 4), we will focus on this part. The denominator of
R̄(s) is of the form s − IRen(s), see equation (24). Since
a numerical analysis of equation (34) shows that IRen(s)
is of the order of its pre-factors N̄eγvac or Ñeγvac unless
zs/ν̄g or zs/ν̃g are small, a pole si must be of the order
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of these pre-factors (if the detuning ∆L is not very large).
In analogy to the case studied in Section 4 one can again
infer that the magnitude of the BEC-induced effects es-
sentially depends on ratios of the form N̄eγvac/ν̄g, for in-
stance. As in Section 4 this allows the conclusion that
for a BEC with a density in the order of 1014 cm−3 non-
Markovian effects can only be relevant if there are very
few coherently excited atoms (in the order of one).

In the case of a BEC in an optical lattice this re-
striction has additional implications: the Rabi frequency
Ω of the coherent standing wave laser has to be very
small since otherwise too many atoms would be excited.
The number of excited atoms is approximately given by
N̄e ≈ (Ω/∆L)2N̄g, where N̄g denotes the total number
of condensed ground-state atoms. Since N̄g is very large
the ratio Ω/∆L must be very small in order to achieve
N̄e ≈ 1. This, in turn, means that the optical potential
(∝ Ω2/∆L) provided by the standing laser beam is very
weak and thus ν̃g is much smaller than ν̄g. A small value
of ν̃g simply means that the polaritonic band gap that is
formed in the presence of a BEC will be small and there-
fore will not have a significant effect on the SE rate.

5.2 Interference channel for spontaneous emission
in PBG

Another observation deals with the dependence of IRen

on the wavefunction Ψ coh
e of coherently excited atoms. It

is known that in free space the shape of the spatial wave-
function of an excited atom does only have a tiny influence
on its SE rate [11]. These small corrections are mainly due
to the atomic kinetic energy which we have neglected in
the Hamiltonian (11) for the quantum fluctuations. In this
sense, one would expect that the SE rate in equation (34)
does also not depend on the shape of the wavefunction
for coherently excited atoms and is proportional to total
number N̄e of excited atoms in which this shape does not
enter. However, equation (34) does also include the terms
proportional to the quantity Ñe which clearly depend on
the shape (for instance, Ñe vanishes for a spatially homo-
geneous wavefunction Ψ coh

e ). Principally, this contribution
can be as large as that depending on N̄e.

This new dependence on the shape of Ψ coh
e is an ad-

ditional effect of the BEC on the SE rate and no con-
sequence of the polaritonic dispersion relation. To un-
derstand its origin it is useful to look at equation (67)
where Ñe appears first. This contribution obviously does
vanish if A0(q, r) or A−1(q, r), which are momentum-
components of the photon modes belonging to momen-
tum q and q− 2kL, is zero. This is the case for photons
interacting with a homogeneous BEC, for instance. The
new effect therefore can be considered as arising from the
interference between different momentum-components of
the photon modes and the wavefunction of coherently ex-
cited atoms.

We want to emphasize that this effect is not tied to the
presence of a BEC. The only conditions for its existence
are the periodicity of both the wavefunction Ψ coh

e for ex-
cited atoms and the eigenmodes for the photons. Since in

an ordinary PBG material the photon eigenmodes are pe-
riodic, this new contribution to the SE rate can be present
in ordinary PBG materials, too. In an ordinary periodic
dielectric the new interference channel for SE even could
produce large contributions since the periodicity of the di-
electric is produced by, e.g., mechanical forces but not by
the light that is used to excite the atoms. Only in the case
of a BEC do the standing laser beams play a double role,
excitation of atoms and production of a periodicity in the
BEC, which results in a suppressed influence of both
the polaritonic band gap and the interference channel on
the SE rate.

6 Conclusion

We conclude this paper by summarizing the results that
we have found. We have examined the self-stabilization of
a BEC against SE by performing a stability analysis of a
macroscopically occupied state for photons and two-level
atoms, which describes a BEC that is coherently coupled
to a laser beam. The presence of the ground-state BEC
thereby leads to the formation of polaritons and intro-
duces non-Markovian effects in the spontaneous decay of
excited atoms.

In the case of a BEC in a traveling-wave laser, the
polariton spectrum displays an avoided crossing around
the resonance frequency which causes similar changes in
the SE rate as a PBG in periodic dielectrics. Its magnitude
depends on the ratio Ne/(ρgλ

3
L) between the total number

of excited atoms Ne and the number of BEC-atoms inside
a cube of the size of an optical wavelength λL. If this ratio
is much larger than 1 the SE rate will essentially remain
unchanged. Otherwise the change can be significant as the
numerical examples shown in Figure 3 demonstrate. The
change of the SE rate displayed in Figure 3 depends on
the detuning of the laser because the coherently excited
atoms are driven at the laser’s frequency ωL.

For a BEC in a 1D optical lattice two new effects do
appear. Being a kind of periodic dielectric the BEC then
produces a real polaritonic band gap. The size of this band
gap is determined by ν̃g. As in the case of a traveling wave
laser, SE is only significantly altered if there are very few
excited atoms. This in turn does imply that the optical
lattice must be very weak and therefore produces only a
small band gap which has only a very small influence on
the SE rate. The second new effect in a periodic BEC is
the appearance of a new channel for SE which arises from
the interference between different momentum components
of the excited-state wavefunction and the photon modes.
Though its effect in a BEC is as small as that of the band
gap it should also be present in the case of a PBG in an
ordinary periodic dielectric where it can be large.

It should be pointed out clearly where exactly the dif-
ference between an ordinary periodic dielectric and a BEC
in an optical lattice comes into play. In an ordinary di-
electric medium the periodicity is produced by whatever
forces determine the stability of the medium. The excita-
tion of an atom inside such a medium is done by a light
beam, i.e., a completely different physical system. In the
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case of a BEC in an optical lattice, however, the excitation
of the atoms and the potential that produces the period-
icity of the BEC both are provided by the same device:
the laser beams of the optical lattice. These lattice beams
have to achieve two competing goals: to provide a strong
periodic potential (to produce a large band gap) and to
cause only a weak excitation (to have few excited atoms).
As the achievement of both goals is impossible the peri-
odicity of the BEC will only have a tiny influence on the
SE rate and it will essentially cause the same effect as a
homogeneous BEC in a running laser wave.

This argument also provides the answer to the question
whether self-stabilization of a BEC against SE is possible.
Since the SE rate is only significantly changed if there
are very few excited atoms, and since a large PBG does
only form for strong laser beams, a self-stabilization is not
possible for BECs with a density in the order of 1014 cm−3.

We finally remark that for two reasons our results are
not applicable to BECs confined in a micrometer-sized
trap, a case discussed in the literature [6,7]. The first rea-
son is that we did not include a trapping potential in our
calculations. While principally a potential could be in-
cluded it would lead to mathematical complications which
would make an analytical treatment impossible. Secondly,
our work is concerned with BECs which are extended
enough to allow the formation of polaritons. This is not
the case for current BECs in a relatively small trap. The
necessary extension of the BEC can be estimated by con-
sidering the typical interaction energy for the formation of
polaritons which is given by ~√νgωres (see Appendix A.2).
For a BEC with a density of 1014 cm−3 this energy is in
the order of ~ × 1011 Hz. For the formation of polaritons
a photon must therefore be inside the BEC longer than
10−11 s. Since it travels at the speed of light the BEC
must therefore be larger than about 3 mm.

This work has been supported by the Australian Research
Council and the Optik Zentrum Konstanz.

Appendix A: BEC in a running laser wave

A.1 Derivation of the macroscopic coherent solution

We are interested in finding a particular solution
(Ψ coh

g , Ψ coh
e , acoh

σ (k)) of macroscopically occupied fields to
equations (2–4) which describes a BEC coherently coupled
to a running laser wave. We thus make the ansatz

Ψ coh
g (k) = (2π)3/2√ρgδ(k) exp[−iµt] (43)

acoh
σ (k) = exp[−iωLt]δ(k− kL)

× δσ,σLΩL[2(2π)3~ε0ωkL ]1/2/(|d|ωres) (44)

Ψ coh
e (k) = (2π)3/2√ρeδ(k− kL) exp[−i(µ+ ωL)t] (45)

which corresponds to a homogeneous ground-state BEC
of density ρg, a laser beam with frequency ωL, Rabi
frequency ΩL > 0, polarization σL, and wave-vector

kL = kLez (inside the BEC), and coherently excited
atoms of density ρe and of momentum ~kL. Inserting
these expressions into the Heisenberg equations of mo-
tions leads to a set of algebraical conditions which fix
the chemical potential ~µ, the laser wavenumber kL, and
the density of coherently excited atoms ρe which we as-
sume to be smaller than ρg. If we neglect the kinetic
energy the density of excited atoms is given by

√
ρe =√

ρgΩL/(µ +∆L). The wavenumber kL is fixed by ckL =
ωL/2 +

√
(ωL/2)2 − ω2

resνg/(µ+∆L), where νg is defined
in equation (31). Note that kL generally is different from
the free-space value ωL/c. For ∆L ≤ 0 (∆L ≥ 0) the chem-
ical potential is given by µ = −∆L/2 ±

√
(∆L/2)2 +Ω2

L
which implies µ + ∆L > 0 (µ + ∆L < 0), respectively.
Note that for ∆L > 0 the expression for ckL implies the
additional constraint µ+∆L > 4νg.

A.2 Derivation of polariton eigenmodes

Having found the macroscopic coherent solution we are
in the position to derive the polariton eigenmodes. Be-
cause of the delta distribution appearing in the macro-
scopic solution (43) the Hamiltonian (12) reduces to a
sum of two-level systems so that its eigenmodes are quite
easy to find. They consist of polaritons with momentum
~q and frequency spectrum

ωq,± =
∆q

2
±Wq, (46)

where we have defined Wq :=
√

(∆q/2)2 + νgωres sin2 ϑq

and ∆q := c|q| − ωres. The coefficients of the polariton
creation operator in equation (14) are given by

Eq,±(k) =
δ(q− k)√

2Wq

√
νgωres sinϑq√
Wq ±∆q/2

,

Aq,±(k) = ±δ(q− k)√
2Wq

√
Wq ±∆q/2 (47)

so that we find for equation (20)

gq,r(k) = (2π)3/2ζ(q)

×√ρeδ(k + q− kL)
ωq,r√

ω2
q,r + νgωres sin2 ϑq

· (48)

The polariton spectrum ω±,q clearly exhibits an avoided
crossing around ∆q = 0 of width √νgωres sinϑq (see
Fig. 2). It also contains a small gap whose edge is reached
in the limit |q| → 0 and ∞ [5]. This gap will play no role
for the SE rate since its edges are far away from the res-
onance frequency. This is physically reasonable since far
away from resonance the two-level approximation for the
atomic internal structure ceases to be valid.
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A.3 Calculation of I(s)

With the help of equation (48) the integral I(s) of equa-
tion (25) can be written in the form

I =
V νeω

2
res

(2π)3

∫
d3k

sin2 ϑk

ωk

(
s− iωL + iωk + νgωres sin2 ϑk

s−i∆L

) ,
(49)

where V denotes the quantization volume. This integral
agrees with the one found in absence of a BEC (which
describes SE in free space) by setting νg = ∆L = 0. We
denote this free space integral by I0 := I(νg = ∆L = 0).
Both integrals are linearly divergent and can be treated in
the way pointed out by Bethe (see, e.g. Ref. [12]), i.e., we
renormalise the integrals by subtracting the free-electron
contribution,

IRen := I − V νeω
2
res

(2π)3i

∫
d3k

sin2 ϑk

ω2
k

(50)

and IRen
0 = IRen(νg = ∆L = 0). These renormalized inte-

grals are only logarithmically divergent.
At this point it is customary in the calculation of

the free-space SE to perform the Wigner-Weisskopf ap-
proximation by neglecting the dependence of IRen

0 (s) on
s. In the presence of a band gap this is inappropriate
due to the strong variation of the mode density around
the gap [2,3]. Nevertheless, we can perform generalized
Wigner-Weisskopf approximation in the following way. We
expect that the typical timescale on which SE happens is
much larger than the optical cycle timescale 1/ωres. From
the definition of the inverse Laplace transform (27) it is
clear that the variable s plays more or less the role of a
Fourier-transformed time. We thus expect that only values
of s much smaller than ωres contribute significantly to the
SE. This implies that we can neglect (the imaginary part
of) s wherever it appears together with ωres or ωL. Thus,
we are allowed to set s− iωL ≈ −iωL in the denominator
of I(s) while retaining the term depending on s− i∆L.

In the case of IRen
0 this procedure immediately repro-

duces the Wigner-Weisskopf result IRen
0 ≈ Ne{(γvac/2) +

i∆2-lev
Lamb}, where γvac and Ne are defined in Section 4. To

fix ∆2-lev
Lamb we follow the theory of Bethe (see, e.g. [12]) and

introduce a cut-off frequency of mec
2/~ in IRen

0 , where me

is the electron’s mass. Calculating the principal value of
the integral then leads to ∆2-lev

Lamb ≈ 2γvac. In contrast to
free space the SE rate in a BEC depends on ∆2-lev

Lamb since
such a radiative frequency correction shifts the center of
the avoided crossing (or of a band gap [3]).

It remains to calculate a renormalized expression of
the integral IRen in the presence of a BEC. Fortunately,
this task reduces to integrals proportional to IRen

0 and a
couple of convergent integrals and leads to equation (30).

Appendix B: BEC in a standing wave laser

B.1 Derivation of the macroscopic coherent solution

Since in a running laser wave the BEC density is not pe-
riodic no PBGs can be formed. It is therefore of interest
to study a BEC interacting with a standing laser wave so
that the formation of photonic, or rather polaritonic band
gaps [10], is possible. The coherent laser field describing a
standing wave is given by

acoh
σ (k) = acoh

1 δσ,σ0{δ(k− kL) + δ(k + kL)} exp[−iωLt].
(51)

We assume that the amplitude acoh
1 is real and that the

polarization σ0 of the laser beam is parallel to the dipole
moment d of the atoms.

Since the laser field provides a periodic potential for
the atoms it is reasonable to assume that the macroscopic
atomic fields are periodic, too (at least for the ground-
state of the system). One also can make the ansatz that
Ψ coh

g has period 2kL so that the coherent solutions can be
written as

Ψ coh
g (k) = e−iµt

∑
n

δ(k− 2nkL)Ψ coh
g,2n (52)

Ψ coh
e (k) = e−i(µ+ωL)t

∑
n

δ(k− (2n+ 1)kL)Ψ coh
e,2n+1.(53)

Inserting this into equations (2–4) leads to the matrix
equations

(ωL − ckL)Ω =
ζ2
σ0

(kL)
~2

∑
n

Ψ coh
g,2nΨ

coh
e,2n+1 (54)(

∆L + µ− (2n+ 1)2 ~k2
L

2M

)
Ψ coh

e,n+1 = Ω{Ψ coh
g,2n + Ψ coh

g,2n+2}

(55)(
µ− (2n)2 ~k2

L

2M

)
Ψ coh

g,2n = Ω{Ψ coh
e,2n−1 + Ψ coh

e,2n+1}. (56)

We have assumed that ζσ(k) is real and does not depend
on the sign of k and introduced the real Rabi frequency
Ω := acoh

1 ζσ0(kL)/~. For consistency with the assumption
that acoh

1 is a real quantity the coefficients Ψ coh
g,n and Ψ coh

e,n

must be real, too.
The system (54–56) of algebraic equations can easily

be solved numerically. To do so we assume that the Rabi
frequency of the laser beam is a given quantity. For a given
value of kL the two equations (55, 56) then just describe
the well-known problem of a two-level atom moving in
a standing laser wave. This is a simple system of linear
equations and can be solved in a standard manner. The
solution then can be inserted into equation (54) which
then, because ωL and acoh

1 are fixed, determines the value
of kL. We then have reinserted the new value for kL into
the system (54–56) and iterated the procedure until kL

did not change significantly anymore.
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A0(q, r) =
ωq,r

p
ω2

q,r − ωq,r∆−1 − ν̄gωresp
2ν̃2

gω
2
res + (ω2

q,r + ν̄gωres)(2ω2
q,r − ωq,r(∆0 +∆−1)− 2ν̄gωres)

(64)

A−1(q, r) =
ωq,rν̃gωres/

p
ω2

q,r − ωq,r∆−1 − ν̄gωresp
2ν̃2

gω
2
res + (ω2

q,r + ν̄gωres)(2ω2
q,r − ωq,r(∆0 +∆−1)− 2ν̄gωres)

· (65)

B.2 Derivation of polariton eigenmodes

In this case the periodic structure of the macroscopic so-
lution (52) leads to a more complicated structure of the
eigenmodes of Hpol than in the case of a traveling laser
wave. To find these modes we make in equation (14) the
ansatz Eq,r(k) =

∑
m∈Z Em(q, r)δ(k − q − 2mkL) and

correspondingly for Aq,r(k). Now q denotes the quasi-
momentum of the polariton. For a single standing laser
wave along the z-axis qz is confined to [−kL, kL] whereas
qx, qy represent the real momentum of the polariton per-
pendicular to the laser beam. The index r is a collective
notation for discrete quantum numbers which include an
internal quantum number taking two values (since two
quantum fields δa and δΨe are involved) and the band
index. This ansatz leads to

gq,r(k) :=
∑
m

Am(q, r)ζ(q + 2mkL)Ψ coh
e (k + q + 2mkL).

(57)

and results in the eigenvalue equations

E(q, r)Em(q, r) = −~∆LEm(q, r)

+
∑
n

Ψ coh
g,2nζ(q + 2(m− n)kL)Am−n(q, r) (58)

E(q, r)Am(q, r) = ~(c|q + 2mkL| − ωL)Am(q, r)

+
∑
n

Ψ coh
g,2nζ(q + 2mkL)Em+n(q, r). (59)

These equations can be substantially simplified by not-
ing that the frequency difference ~(c|q + 2mkL| − ωL) is
huge compared to all other energy scales involved unless
m = 0,±1 and q is close to ±kL. We thus can approxi-
mate the photon-part of all modes with |m| > 1 as free
photons and need only to retain the coefficients A0(q, r)
and A−1(q, r) for qz ∈ [0, kL] and the coefficients A0(q, r)
and A1(q, r) for qz ∈ [−kL, 0], respectively. We will focus
here on the case qz ∈ [0, kL] since the second case can be
treated analogously.

To solve the resulting equations we introduce the
two quantities F0 :=

∑
n Ψ

coh
g,2nEn(q, r) and F−1 :=∑

n Ψ
coh
g,2nEn−1(q, r) and make the approximation ζ(q) ≈

ζ(q− 2kL) ≈ ζ(kL) so that the problem is reduced to the

simple matrix eigenvalue equation

(E(q, r) + ~∆L)

 F0

F−1

A0

A−1

 =

 0 0 ζ(kL)(2π)3ρ̄g ζ(kL)(2π)3ρ̃g

0 0 ζ(kL)(2π)3ρ̃g ζ(kL)(2π)3ρ̄g

ζ(kL) 0 ~∆0 0
0 ζ(kL) 0 ~∆−1


 F0

F−1

A0

A−1

 .

(60)

Here we have introduced

∆0 := c|q| − ωres (61)
∆−1 := c|q− 2kL| − ωres (62)

and the quantities ρ̄g and ρ̃g which are defined in equa-
tions (41, 42), respectively.

The problem of finding the eigenvalues and eigenvec-
tors of a 4 × 4 matrix is a basic one. The eigenvalues
ωq,r := (E(q, r)+~∆L)/~ fulfill the relation Pch(ωq,r) = 0,
where

Pch(z) = (z2 − z∆−1 − ν̄gωres)

× (z2 − z∆0 − ν̄gωres)− ν̃2
gω

2
res (63)

is the characteristic polynomial of the matrix and the fre-
quencies ν̄g and ν̃g are defined in equations (39, 40).

Due to the periodicity of the ground-state BEC ωq,r

as a function of the quasi-momentum q exhibits the phe-
nomenon of band gaps [10], see Figure 4. Though closed
expressions for the eigenvalues ωq,r do exist they are
rather cumbersome and not of much use for our problem.

We instead will use a theorem on the eigenvalues to
derive the physical quantities of interest. To do so we
assume that we already know the eigenvalues. For a given
eigenvalue ωq,r it is easy to solve for the eigenvectors. For
the relevant components we find

see equations (64, 65) above.

The normalization has been done by requiring the particle
number (13) to be pseudo-normalized, i.e.,∑

m

{
|Em(q, r)|2 + |Am(q, r)|2

}
= 1. (66)

The analogous equation for qz ∈ [−kL, 0] is obtained if
A−1(q, r) is replaced by A1(q, r) and ∆−1 by ∆1 := c|q+
2kL| − ωres.
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I =
N̄e

i~2

Z
|qz |>2kL

dqz

Z ∞
−∞

dqxdqy
ζ(q)2

zs − c|q|+ ωres

+
zs
i~2

Z
V−

N̄eζ(q)2[z2
s − zs∆1 − ν̄gωres] + N̄eζ(q + 2kL)2[z2

s − zs∆0 − ν̄gωres] + 2Ñeν̃gωresζ(q)ζ(q + 2kL)

z4
s − z3

s(∆0 +∆1) + z2
s(∆0∆1 − 2ν̄gωres) + zsν̄gωres(∆0 +∆1) + ν̄2

gω
2
res − ν̃2

gω
2
res

+
zs
i~2

Z
V+

d3q
N̄eζ(q)2[z2

s − zs∆−1 − ν̄gωres] + N̄eζ(q− 2kL)2[z2
s − zs∆0 − ν̄gωres] + 2Ñeν̃gωresζ(q)ζ(q− 2kL)

z4
s − z3

s(∆0 +∆−1) + z2
s(∆0∆−1 − 2ν̄gωres) + zsν̄gωres(∆0 +∆−1) + ν̄2

gω
2
res − ν̃2

gω
2
res

(73)

q

ω

photons

excited atoms

band gap

Fig. 4. A schematic drawing of the polariton spectrum for a
BEC in a 1D optical lattice. Because the BEC is periodic band
gaps do appear.

B.3 Calculation of I(s)

To calculate the integral I(s) of equation (25) we first need
to calculate the integral over k in the nominator which is
an easy task. With equation (57) we find for qz ∈ [0, kL]

∫
d3k|gq,r(k)|2 = N̄e{A2

0(q, r)ζ2(q)

+A2
−1(q, r)ζ2(q− 2kL)}

+ 2ÑeA−1(q, r)A0(q, r)ζ(q)ζ(q− 2kL) (67)

if r is in the lowest two energy bands. The numbers N̄e

and Ñe are defined in equations (37, 38), respectively. For
qz ∈ [−kL, 0] and the two lowest energy bands one has to
replaceA−1(q, r) byA1(q, r) and ζ(q−2kL) by ζ(q+2kL).
For all higher bands, which according to our approxima-
tion just describe free photons, the integral (67) has the
simple value N̄eζ

2(q).
From equation (67) it becomes clear that to calculate

I of equation (25) we have to find closed expressions for
terms like

∑
r A−1(q, r)A0(q, r)/(zs − ωq,r). For the low-

est two energy bands, the sum over r now runs over the
four eigenvectors of the matrix (60). It would be extremely
tedious if not practically impossible to derive these sums
by simply inserting the complicated closed expressions for
ωq,r into them. Instead, we start with the observation that
the polynomial appearing in the denominator of equa-

tions (64, 65) can be written as

2ν̃2
gω

2
res + (ω2

q,r + ν̄gωres)

× (2ω2
q,r − ωq,r(∆0 +∆−1)− 2ν̄gωres) = ωq,rP

′
ch(ωq,r),

(68)

where P ′ch(z) denotes the derivative of the characteristic
polynomial (63). This enables us to write the sum under
consideration in the form∑
r

A−1(q, r)A0(q, r)
(zs − ωq,r)

= ν̃gωres

∑
r

ωq,r

P ′ch(ωq,r)(zs − ωq,r)
·

(69)

This can be further simplified by noting that the char-
acteristic polynomial can also be written in the form
Pch(z) =

∏
r(z − ωq,r) so that we have P ′ch(ωq,r) =∏

r′ 6=r(ωq,r − ωq,r′). Using this expression it is straight-
forward if still tedious to find∑

r

A−1(q, r)A0(q, r)
(zs − ωq,r)

=
zsν̃gωres

Pch(zs)
· (70)

We thus have been able to calculate this sum without ex-
plicit knowledge of the eigenvalues of equation (60). The
remaining sums which result from the insertion of equa-
tion (67) into equation (25) can be treated in a similar
way and are given by∑

r

A2
0(q, r)

(zs − ωq,r)
= zs

z2
s − zs∆−1 − ν̄gωres

Pch(zs)
(71)

∑
r

A2
−1(q, r)

(zs − ωq,r)
= zs

z2
s − zs∆0 − ν̄gωres

Pch(zs)
(72)

for the lowest two energy bands and qz ∈ [0, kL]. Again the
corresponding expressions for qz ∈ [−kL, 0] are obtained
by replacing A−1(q, s) by A1(q, s) and ∆−1 by ∆1.

Taking everything together the use of equation (67)
and the three sums (70, 71, 72) allows us to bring the
integral (25) into the form

see equation (73) above

where the areas of integration V± are given by qx, qy ∈
(−∞,∞) and qz ∈ [0, kL] for V+ as well as qz ∈ [−kL, 0] for
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I − I0 =
2iN̄e

~2

Z 2kL

0

dqz

Z ∞
−∞

dqxdqy
ζ(q)2

zs − c|q|+ ωres

+
2zs
i~2

Z 2kL

0

dqz

Z
dqxdqy

N̄eζ(q)2[z2
s − zs∆−1 − ν̄gωres] + 2Ñeν̃gωresζ(q)ζ(q + 2kL)

[z2
s − zs∆0 − ν̄gωres][z2

s − zs∆−1 − ν̄gωres]− ν̃2
gω

2
res

(75)

IRen =
N̄eγvac

2πi

�
2 + ln

�
Λ

ωres

��
+
zsN̄eγvacc

2

4iπ2ωres

Z 2kL

0

dqz

Z
dqxdqy

[z2
s − zs∆−1 − ν̄gωres]

|q|
�

[z2
s − zs∆0 − ν̄gωres][z2

s − zs∆−1 − ν̄gωres]− ν̃2
gω

2
res

	
+
zsÑeν̃gγvacc

3

2iπ2

Z 2kL

0

dqz

Z
dqxdqy

|q|−1/4|q + 2kL|−1/4

[z2
s − zs∆0 − ν̄gωres][z2

s − zs∆−1 − ν̄gωres]− ν̃2
gω

2
res

(78)

V−. The first integral in equation (73) represents the con-
tribution from the higher polaritonic energy bands where
the polaritons can be considered as free photons. Apart
from the restriction |qz | > 2kL, which essentially means
that the photons are far off-resonant, it has the same form
as the integral

I0 =
N̄e

i~2

∫ ∞
−∞

dqxdqydqz
ζ(q)2

zs − c|q|+ ωres
(74)

which appears in the calculation of the free-space SE rate.
The second contribution arises from the two lowest energy
bands for negative quasi-momentum 0 > qz > −kL, and
the third integral represents the corresponding contribu-
tion for positive quasi momentum qz. It is not hard to see
that equation (73) reduces to the free integral (74) in ab-
sence of a ground-state BEC, i.e., for ν̄g = ν̃g = 0 and to
equation (49) if the BEC is homogeneous (for ν̃g = 0 but
ν̄g 6= 0).

We now return to the evaluation of equation (73).
Shifting the integration variable qz and exploiting the
symmetries ζ(−k) = ζ(k) and ∆1(−q) = ∆−1(q) allows
us to combine the last two integrals into a more conve-
nient form. To simplify the process of renormalisation it
is also advantageous to calculate I − I0 instead of I alone
since in this difference the divergence appearing in I0 is
canceled. We then find

see equation (75) above.

To calculate these expressions we have to make one fur-
ther approximation by neglecting the angular dependence
in ζ(q) = sin(θ)ωres|d|[~/(2(2π)3ε0c|q|]1/2, where θ is the
angle between q and the atomic dipole moment d. Re-
placing sin(θ) by

√
2/3 for all values of q leads to the

correct result in absence of a BEC and should produce
qualitatively correct results for the case under considera-
tion. Doing this approximation in the case of a homoge-
neous BEC just amounts in replacing a factor of 4/5 by
2/3 in the modifications of the SE rate (33). We remark
that neglecting the dependence of ζ on sin(θ) does only
symmetrise the integrand in the (qx, qy) plane. This does
not correspond to an isotropic band model because the
asymmetry between qz and (qx, qy) still persists.

The calculation of the first integral of equation (75),
which roughly corresponds to the contribution of −I0, is

quickly done and results in

2iN̄e

~2

∫ 2kL

0

dqz
∫ ∞
−∞

dqxdqy
ζ(q)2

zs − c|q|+ ωres
=

N̄eγvac

2πi

{
2 + 2 ln

(
Λ

ωres

)
+ iπsgn(Im(zs))

}
. (76)

Here Λ is a cut-off which usually is taken to be Λ =
mec

2/~, where me is the electron’s mass (see, e.g.,
Ref. [12]).

The dependence on the sign of Im(zs) originally comes
from a logarithm of the form ln(−(ωres + zs)/Λ). This
expression can be reduced to the one presented in equa-
tion (76) by doing a generalized Wigner-Weisskopf approx-
imation as it was introduced above in the case of a running
laser wave. Though Im(zs) is also much smaller than any
other quantity in the above logarithm, it determines the
sign of the imaginary part of the logarithm’s argument.
Since the logarithm has a branch cut along the negative
real axis, this sign determines on which side of the cut we
are.

It is also worth remarking that equation (76) is loga-
rithmically divergent with Λ although we did not subtract
the free-electron part, a step which in the free-space calcu-
lation is done to remove a linearly divergent contribution
(see, e.g., Ref. [12]). This is because the integration over
qz does not extend to infinity, thus reducing the degree of
divergence by one.

As has been already mentioned, equation (76) very
roughly corresponds to the negative of the free-space inte-
gral I0. As a consequence, its contribution will be mostly
canceled after the renormalisation of I. This renormalisa-
tion is easily done by noting that I − I0 = IRen − IRen

0 so
that IRen = (I − I0) + IRen

0 , where the superscript “Ren”
denotes the renormalized integrals and the renormalized
free-space integral is approximately given by

IRen
0 = i

γvacN̄e

2π

{
ln
(

Λ

ωres

)
+ iπsgn(Im(zs))

}
. (77)

This allows us to derive from equation (75) the expression

see equation (78) above.

To reduce equation (78) it is convenient to introduce
the scaled variables of integration u := qz/(2kL) and
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IRen =
N̄eγvac

2πi

�
2 + ln

�
Λ

ωres

��
+
γvacN̄e

2πi

Z 1

0

du

Z ∞
0

dv
(ckL/ωres)[f0(zs)−

p
(u− 1)2 + v]√

u2 + v{[f0(zs)−
√
u2 + v][f0(zs)−

p
(u− 1)2 + v]− f1(zs)}

+
γvacÑe

4πi

ν̃g

zs

Z 1

0

du

Z ∞
0

dv
(u2 + v)−1/4((u− 1)2 + v)−1/4

[f0(zs)−
√
u2 + v][f0(zs)−

p
(u− 1)2 + v]− f1(zs)

(79)

v := (q2
x + q2

y)/(4k2
L) and the abbreviations (35, 36) for

the evaluation. Equation (78) then becomes

see equation (79) above.

This expression can be further reduced by switching to
the integration variable v′ =

√
(u− 1)2 + v and exchang-

ing the sequence of integration so that one first integrates
over u. This allows us to reduce the integral I to a num-
ber of one-dimensional integrals and leads us to our final
analytical result (34).
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